1,083 research outputs found

    Functional adaptivity for digital library services in e-infrastructures: the gCube approach

    Get PDF
    We consider the problem of e-Infrastructures that wish to reconcile the generality of their services with the bespoke requirements of diverse user communities. We motivate the requirement of functional adaptivity in the context of gCube, a service-based system that integrates Grid and Digital Library technologies to deploy, operate, and monitor Virtual Research Environments defined over infrastructural resources. We argue that adaptivity requires mapping service interfaces onto multiple implementations, truly alternative interpretations of the same functionality. We then analyse two design solutions in which the alternative implementations are, respectively, full-fledged services and local components of a single service. We associate the latter with lower development costs and increased binding flexibility, and outline a strategy to deploy them dynamically as the payload of service plugins. The result is an infrastructure in which services exhibit multiple behaviours, know how to select the most appropriate behaviour, and can seamlessly learn new behaviours

    Hybrid applications over XML - integrating the declarative and navigational approaches

    Get PDF
    We discuss the design of a quasi-statically typed language for XML in which data may be associated with different structures and different algebras in different scopes, whilst preserving identity. In declarative scopes, data are trees and may be queried with the full flexibility associated with XML query algebras. In procedural scopes, data have more conventional structures, such as records and sets, and can be manipulated with the constructs normally found in mainstream languages. For its original form of structural polymorphism, the language offers integrated support for the development of hybrid applications over XML, where data change form to re flct programming expectations and enable their enforcement

    Precision Measurement of 11Li moments: Influence of Halo Neutrons on the 9Li Core

    Get PDF
    The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5)mb and mu=3.6712(3)mu_N, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the radii and quadrupole moments of the lithium isotopes.Comment: 4 pages, 4 figures, 1 tabl

    Disparate Effects of Cu and V on Structures of Exohedral Transition Metal-Doped Silicon Clusters: A Combined Far-Infrared Spectroscopic and Computational Study

    No full text
    The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of SinM+ (n = 4−11 for M = V, and n = 6−11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding SinM+·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si9Cu+, Si11Cu+, and Si10V+, the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal’s 3d orbitals in the binding of the dopant atoms

    Задачи глобальной экологии

    Get PDF
    Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the slower gold atoms are confined to the smaller nanoclusters. These transformations in the Pd-Au nanocluster size and composition set a limit for chemical reactions in which such nanoclusters are involved together with hydrogen

    Altering CO binding on gold cluster cations by Pd-doping

    Get PDF
    The introduction of dopant atoms into metal nanoparticles is an effective way to control the interaction with adsorbate molecules and is important in many catalytic processes. In this work, experimental and theoretical evidence of the influence of Pd doping on the bonding between small cationic AuN+ clusters and CO is presented. The CO adsorption is studied by combining low-pressure collision cell reactivity and infrared multiple photon dissociation spectroscopy experiments with density functional theory calculations. Measured dissociation rates of cluster–CO complexes (N≤21) allow the estimation of cluster–CO binding energies, showing that Pd doping increases the CO adsorption energy to an extent that is size-dependent. These trends are reproduced by theoretical calculations up to N= 13. In agreement with theory, measurements of the C–O vibrational frequency suggest that for the doped PdAuN-1+ (N=3–5, 11) clusters, CO adsorbs on an Au atom, while for N=6–10 and N=12–14, CO interacts directly with the Pd dopant. A pronounced red-shifting of the C–O vibrational frequency is observed when CO interacts directly with the Pd dopant, indicating a significant back-donation of electron charge from Pd to CO. In contrast, the blue-shifted frequencies, observed when CO interacts with an Au atom, indicate that σ-donation dominates the Au–CO interaction. Studying such systems at the sub-nanometre scale enables a fundamental comprehension of the interactions between adsorbates, dopants and the host (Au) species at the atomic level

    Evolution of Vibrational Spectra in the Manganese-Silicon Clusters Mn<sub>2</sub>Si<sub>n</sub>, n = 10, 12, and 13, and Cationic [Mn<sub>2</sub>Si<sub>13</sub>]<sup>+</sup>

    Get PDF
    A comparison of DFT-computed and measured infrared spectra reveals the ground state structures of a series of gas-phase silicon clusters containing a common Mn2 unit. Mn2Si12 and [Mn2Si13]+ are both axially symmetric, allowing for a clean separation of the vibrational modes into parallel (a1) and perpendicular (e1) components. Information about the Mn–Mn and Mn–Si bonding can be extracted by tracing the evolution of these modes as the cluster increases in size. In [Mn2Si13]+ where the antiprismatic core is capped on both hexagonal faces, a relatively simple spectrum emerges that reflects a pseudo-D6d geometry. In cases where the cluster is more polar, either because there is no capping atom in the lower face (Mn2Si12) or the capping atom is present but displaced off the principal axis (Mn2Si13), the spectra include additional features derived from vibrational modes that are forbidden in the parent antiprism
    corecore